<< Главная страница

ГЛАВА
         10

СЕРДЕЧНО-СОСУДИСТАЯ
СИСТЕМА






Сердце и кровеносные сосуды образуют замкнутую разветвлённую сеть – сердечно-сосудистую систему.

СОСУДЫ

Кровеносные сосуды присутствуют почти во всех тканях. Их нет лишь в эпителиях, ногтях, хрящах, эмали зубов, в некоторых участках клапанов сердца и в ряде других областей, которые питаются за счёт диффузии необходимых веществ из крови. В зависимости от строения стенки кровеносного сосуда и его калибра в сосудистой системе различают артерии, артериолы, капилляры, венулы и вены. Стенка артерий и вен состоит из трёх оболочек: внутренней (t. intima), средней (t. media) и наружной (t. adventitia).

АРТЕРИИ

Артерии – кровеносные сосуды, транспортирующие кровь от сердца. Стенка артерий амортизирует ударную волну крови (систолический выброс) и переправляет далее выбрасываемую с каждым ударом сердца кровь. Артерии, расположенные вблизи сердца (магистральные сосуды), испытывают наибольший перепад давления. Поэтому они обладают выраженной эластичностью. Периферические артерии имеют развитую мышечную стенку, способны изменять величину просвета, а следовательно, скорость кровотока и распределение крови в сосудистом русле.

План строения

Внутренняя оболочка. Поверхность t. intima выстлана пластом находящихся на базальной мембране плоских

288

эндотелиальных клеток. Под эндотелием расположен слой рыхлой соединительной ткани (подэндотелиальный слой, или слой Лангханса).

Внутренняя эластическая мембрана (membrana elastica interna) отделяет внутреннюю оболочку сосуда от средней.

Средняя оболочка. В состав t. media, помимо соединительнотканного матрикса с небольшим количеством фибробластов, входят ГМК и эластические структуры (эластические мембраны и эластические волокна). Соотношение этих элементов – главный критерий классификации артерий: в артериях мышечного типа преобладают ГМК, а в артериях эластического типа – эластические элементы.

Наружная оболочка образована волокнистой соединительной тканью с сетью кровеносных сосудов (vasa vasorum) и сопровождающими их нервными волокнами (nervi vasorum, преимущественно терминальные ветвления постганглионарных аксонов симпатического отдела нервной системы).

Артерии эластического типа

К артериям эластического типа (см. рис. 36 на вклейке) относят аорту, лёгочный ствол, общую сонную и подвздошные артерии. В состав их стенки в большом количестве входят эластические мембраны и эластические волокна. Толщина стенки артерий эластического типа составляет примерно 15% диаметра их просвета.

Внутренняя оболочка

Внутренняя оболочка представлена эндотелием и подэндотелиальным слоем.

Эндотелий. Просвет аорты выстлан крупными эндотелиальными клетками полигональной или округлой формы, связанными плотными и щелевыми контактами. В цитоплазме присутствуют электроноплотные гранулы, многочисленные светлые пиноцитозные пузырьки, митохондрии. В области ядра клетка выпячивается в просвет сосуда. Эндотелий отделён от подлежащей соединительной ткани хорошо выраженной базальной мембраной.

Подэндотелиальный слой содержит эластические, коллагеновые и ретикулиновые волокна (коллагены типа I и III), фибробласты, продольно ориентированные ГМК, микрофибриллы (коллаген типа VI). Микрофибриллы находятся в непосредственной близости от клеток и коллагеновых фибрилл, "заякоривая" их в межклеточном матриксе.

Средняя оболочка

Средняя оболочка имеет толщину около 500 мкм и содержит окончатые эластические мембраны, ГМК, коллагеновые и эластические волокна. Окончатые эластические мембраны имеют толщину 2-3 мкм, их около 50–75. С возрастом количество и толщина окончатых эластических мембран увеличиваются. Между эластическими мембранами располагаются спирально ориентированные ГМК. ГМК артерий эластического типа специализированы для синтеза эластина, коллагена и компонентов аморфного межклеточного вещества с высоким содержанием сульфатированных гликозаминогликанов. В средней оболочке аорты и лёгочного ствола присутствуют кардиомиоциты.

289

Наружная оболочка

Наружная оболочка содержит пучки коллагеновых и эластических волокон, ориентированных продольно или идущих по спирали. Адвентиция содержит мелкие кровеносные и лимфатические сосуды, а также миелиновые и безмиелиновые нервные волокна. Vasa vasorum кровоснабжают наружную оболочку и наружную треть средней оболочки. Ткани внутренней оболочки и внутренних двух третей средней оболочки питаются за счёт диффузии веществ из крови, находящейся в просвете сосуда.

Артерии мышечного типа

Их суммарный диаметр (толщина стенки + диаметр просвета) достигает 1 см, диаметр просвета варьирует от 0,3 до 10 мм. Артерии мышечного типа относят к распределительным (см. рис. 35 на вклейке).

Внутренняя эластическая мембрана не во всех артериях мышечного типа развита одинаково хорошо. Сравнительно слабо она выражена в артериях мозга и его оболочек, в ветвях лёгочной артерии, а в пупочной артерии полностью отсутствует.

Средняя оболочка содержит 10–40 плотно упакованных слоев ГМК. ГМК ориентированы спирально, что обеспечивает регуляцию просвета сосуда в зависимости от тонуса ГМК. Вазоконстрикция (сужение просвета) происходит при сокращении ГМК средней оболочки. Вазодилатация (расширение просвета) происходит при расслаблении ГМК. Снаружи средняя оболочка ограничена наружной эластической мембраной, выраженной слабее, чем внутренняя. Наружная эластическая мембрана хорошо развита лишь в крупных артериях; в артериях меньшего калибра она отсутствует.

Наружная оболочка в артериях мышечного типа развита хорошо. Внутренний её слой – плотная волокнистая соединительная ткань, а наружный – рыхлая соединительная ткань. Обычно в наружной оболочке присутствуют многочисленные нервные волокна и окончания, сосуды сосудов, жировые клетки. В наружной оболочке коронарных и селезёночной артерий присутствуют ориентированные продольно (по отношению к длиннику сосуда) ГМК.

Коронарные артерии относят к артериям мышечного типа. В большинстве участков этих сосудов эндотелий максимально приближен к внутренней эластической мембране. В участках ветвления внутренняя оболочка утолщена (особенно в раннем детском возрасте). Здесь ГМК, мигрирующие через фенестры внутренней эластической мембраны из средней оболочки, вырабатывают эластин.

Артериолы

Артерии мышечного типа переходят в артериолы – короткие сосуды, имеющие важное значение для регуляции артериального давления (АД). Стенка артериолы состоит из эндотелия, внутренней эластической мембраны, нескольких слоев циркулярно ориентированных ГМК и наружной оболочки. Снаружи к артериоле прилегают периваскулярные соединительнотканные клетки, безмиелиновые нервные волокна, пучки коллагеновых волокон. В артериолах наименьшего диаметра внутренняя эластическая мембрана отсутствует, исключение

290

составляют приносящие артериолы в почке; несмотря на свой малый диаметр (10– 15 мкм), они имеют прерывистую эластическую мембрану. Отростки эндотелиальных клеток проходят через отверстия во внутренней эластической мембране и образуют с ГМК щелевые контакты.

Терминальная артериола содержит продольно ориентированные эндотелиальные клетки и непрерывный слой циркулярно ориентированных ГМК. Снаружи от ГМК расположены фибробласты.

Метартериола отходит от терминальной и во многих участках, разбросанных примерно вдоль первой половины сосуда, содержит циркулярно ориентированные ГМК.

КАПИЛЛЯРЫ

Разветвлённая капиллярная сеть соединяет артериальное и венозное русла. Капилляры участвуют в обмене веществ между кровью и тканями. Общая обменная поверхность (поверхность капилляров и венул) составляет не менее 1000 м2, а в пересчёте на 100 г ткани – 1,5 м2. В регуляции капиллярного кровотока принимают непосредственное участие артериолы и венулы. Плотность капилляров в различных органах существенно варьирует. Так, на 1 мм3 миокарда, головного мозга, печени, почек приходится 2500–3000 капилляров; в скелетной мышце – 300–1000 капилляров; в соединительной, жировой и костной тканях их значительно меньше.

Типы капилляров

Стенка капилляра образована эндотелием, его базальной мембраной и перицитами. Различают три основных типа капилляров (рис. 10-1): с непрерывным эндотелием, фенестрированным эндотелием и прерывистым эндотелием.

Рис. 10-1 Типы капилляров: А– капилляр с непрерывным эндотелием, Б – с фенестрированным эндотелием, В – капилляр синусоидного типа [64].
Рис. 10-1 Типы капилляров: А– капилляр с непрерывным эндотелием, Б – с фенестрированным эндотелием, В – капилляр синусоидного типа [64].

291

Капилляры с непрерывным эндотелием

Капилляры с непрерывным эндотелием – наиболее распространенный тип. Диаметр их просвета менее 10 мкм Эндотелиальные клетки связаны при помощи плотных контактов, содержат множество пиноцитозных пузырьков, участвующих в транспорте метаболитов между кровью и тканями. Капилляры этого типа характерны для мышц.

Капилляры с фенестрированным эндотелием

Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в эндокринной части поджелудочной железы. Фенестра – истонченный участок эндотелиальной клетки диаметром 50–80 нм. Предполагают, что фенестры облегчают транспорт веществ через эндотелий. Наиболее чётко фенестры видны на электронограммах капилляров почечных телец

Капилляр с прерывистым эндотелием

Капилляр с прерывистым эндотелием называют также капилляром синусоидного типа, или синусоидом. Подобный тип капилляров присутствует в кроветворных органах, состоит из эндотелиальных клеток с щелями между ними и прерывистой базальной мембраны.

Барьеры

Частный случай капилляров с непрерывным эндотелием – капилляры, формирующие гематоэнцефалический и гематотимический барьеры. Для эндотелия капилляров барьерного типа характерно умеренное количество пиноцитозных пузырьков и плотные контакты.

Гематоэнцефалический барьер

Гематоэнцефалический барьер (рис. 10-2) надежно изолирует мозг от временных изменений состава крови. Непрерывный эндотелий капилляров – основа гематоэнцефалического барьера: эндотелиальные клетки связаны при

Рис 10-2. Гематоэнцефалический барьер образован эндотелиальными клетками капилляров мозга. Базальная мембрана, окружающая эндотелий, и перициты, а также астроциты, ножки которых полностью охватывают капилляр снаружи, не являются компонентами барьера [9] Рис 10-2. Гематоэнцефалический барьер образован эндотелиальными клетками капилляров мозга. Базальная мембрана, окружающая эндотелий, и перициты, а также астроциты, ножки которых полностью охватывают капилляр снаружи, не являются компонентамибарьера [9]

292

помощи непрерывных цепочек плотных контактов. Снаружи эндотелиальная трубка покрыта базальной мембраной. Капилляры почти полностью окружены отростками астроцитов. Гематоэнцефалический барьер функционирует как избирательный фильтр. Наибольшей проницаемостью обладают вещества, растворимые в липидах (например, никотин, этиловый спирт, героин). Глюкоза транспортируется из крови в мозг при помощи соответствующих транспортёров. Особое значение для мозга имеет система транспорта тормозного нейромедиатора – аминокислоты глицина. Его концентрация в непосредственной близости от нейронов должна быть значительно ниже, чем в крови. Эти различия в концентрации глицина обеспечивают транспортные системы эндотелия.

Микроциркуляторное русло

Совокупность артериол, капилляров и венул составляет структурно-функциональную единицу сердечно-сосудистой системы – Микроциркуляторное (терминальное) русло (рис. 10-3). Терминальное русло организовано следующим образом: под прямым углом от терминальной артериолы отходит метартериола, пересекающая всё капиллярное русло и открывающаяся в венулу. От артериол берут начало анастомозирующие истинные капилляры, образующие сеть; венозная часть капилляров открывается в посткапиллярные венулы. В месте отделения капилляра от артериол имеется прекапиллярный сфинктер – скопление циркулярно ориентированных ГМК. Сфинктеры контролируют локальный объём крови, проходящей через истинные капилляры; объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами. Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы).

ВЕНЫ

Кровь из капилляров терминальной сети последовательно поступает в посткапиллярные, собирательные, мышечные венулы и попадает в вены.

Венулы

Посткапиллярная венула

Посткапиллярная венула (диаметр от 8 до 30 мкм) служит обычным местом выхода лейкоцитов из циркуляции. По мере увеличения диаметра посткапиллярной венулы увеличивается количество перицитов, ГМК отсутствуют. Гистамин (через гистаминовые рецепторы) вызывает резкое увеличение проницаемости эндотелия посткапиллярных венул, что приводит к отёку окружающих тканей.

293

Рис. 10-3. Микроциркуляторное русло. Артериола → метартериола → капиллярная сеть с двумя отделами – артериальный и венозный → венула. Артериовенозные анастомозы соединяют артериолы с венулами [9].
Рис. 10-3. Микроциркуляторное русло. Артериола → метартериола → капиллярная сеть с двумя отделами – артериальный и венозный → венула. Артериовенозные анастомозы соединяют артериолы с венулами [9].

Собирательная венула

Собирательная венула (диаметр 30–50 мкм) имеет наружную оболочку из фибробластов и коллагеновых волокон.

Мышечная венула

Мышечная венула (диаметр 50–100 мкм) содержит 1–2 слоя ГМК, причём в отличие от артериол ГМК не полностью охватывают сосуд. В эндотелиальных клетках присутствует большое количество актиновых микрофиламентов, играющих важную роль для изменения формы клеток. Наружная оболочка сосуда

294

содержит пучки коллагеновых волокон, ориентированных в различных направлениях, фибробласты. Мышечная венула переходит в мышечную вену, содержащую несколько слоев ГМК.

Вены

Вены – сосуды, по которым кровь оттекает от органов и тканей к сердцу. Около 70% объёма циркулирующей крови находится в венах. В стенке вен, как и в стенке артерий, различают те же три оболочки: внутреннюю (интиму), среднюю и наружную (адвентициальную). Вены, как правило, имеют больший диаметр, чем одноимённые артерии. Их просвет в отличие от артерий не зияет. Стенка вены тоньше; средняя оболочка менее выражена, а наружная оболочка, напротив, более толстая, чем у одноимённых артерий (см. рис. 35 на вклейке). Некоторые вены имеют клапаны.

Внутренняя оболочка

Внутренняя оболочка состоит из эндотелия, снаружи от которого расположен подэндотелиальный слой (рыхлая соединительная ткань и ГМК). Внутренняя эластическая мембрана выражена слабо и часто отсутствует.

Средняя оболочка

Средняя оболочка вен мышечного типа содержит циркулярно ориентированные ГМК. Между ними располагаются преимущественно коллагеновые и в меньшем количестве эластические волокна. Количество ГМК в средней оболочке вен существенно меньше, чем в средней оболочке сопровождающей артерии. В этом отношении отдельно стоят вены нижних конечностей. Здесь (преимущественно в подкожных венах) средняя оболочка содержит значительное количество ГМК, во внутренней части средней оболочки они ориентированы продольно, а в наружной – циркулярно.

Полиморфность вен

Структура стенки различных вен характеризуется многообразием. Не во всех венах имеются все три оболочки. Средняя оболочка хорошо развита в венах конечностей, особенно нижних, и отсутствует во всех безмышечных венах – головного мозга, мозговых оболочек, сетчатки глаза, трабекул селезёнки, костей, в мелких венах внутренних органов. Верхняя полая вена, плечеголовные и яремные вены содержат безмышечные участки (нет средней оболочки). Средняя и наружная оболочки отсутствуют в синусах твёрдой мозговой оболочки, а также в её венах. Средняя оболочка значительно развита в подкожных венах нижних конечностей. Во внутренней её части ГМК ориентированы продольно, а в толстой наружной части – циркулярно. В крупных венах выражен подэндотелиальный слой, в средней оболочке сравнительно мало ГМК, наружная оболочка значительно превосходит толщину остальных и в своей внутренней части содержит многочисленные продольно ориентированные пучки ГМК.

Клапаны

Клапаны вен пропускают кровь только к сердцу; представляют собой складки интимы. Соединительная ткань образует структурную основу створок клапанов,

295

а вблизи их фиксированного края располагаются ГМК. Клапаны отсутствуют в венах брюшной полости и грудной клетки.

СОСУДИСТЫЕ АФФЕРЕНТЫ

Изменения рО2, рСО2 крови, концентрация Н+, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальные эффекты на стенку сосудов, так и регистрируются встроенными в стенку сосудов хеморецепторами, а также барорецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы ЦНС реализует двигательная вегетативная иннервация ГМК стенки сосудов и миокарда. Кроме того, существует мощная система гуморальных регуляторов ГМК стенки сосудов (вазоконстрикторы и вазодилататоры) и проницаемости эндотелия. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нервные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва. В рефлекторной регуляции кровообращения участвуют каротидный синус и каротидное тельце (рис. 10-4), а также подобные им образования дуги аорты, лёгочного ствола, правой подключичной артерии.

Каротидный синус

Каротидный синус расположен вблизи бифуркации общей сонной артерии, это расширение просвета внутренней сонной артерии тотчас у места её ответвления от общей сонной артерии. В области расширения средняя оболочка сосуда истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные барорецепторы. Если учесть, что средняя оболочка сосуда в пределах каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувствительны к любым изменениям АД. Отсюда информация поступает в центры, регулирующие

Рис. 10-4. Локализация каротидного синуса и каротидного тельца. Каротидный синус расположен в утолщении стенки внутренней сонной артерии вблизи бифуркации общей сонной артерии. Здесь же, тотчас в области бифуркации, находится каротидное тельце [71]. Рис. 10-4. Локализация каротидного синуса и каротидного тельца. Каротидный синус расположен в утолщении стенки внутренней сонной артерии вблизи бифуркации общей сонной артерии. Здесь же, тотчас в области бифуркации, находится каротидное тельце [71].

296

деятельность сердечно-сосудистой системы. Нервные окончания барорецепторов каротидного синуса – терминали волокон, проходящих в составе синусного нерва (Херинга) – ветви языкоглоточного нерва.

Каротидное тельце

Каротидное тельце (рис. 10-5) реагирует на изменения химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погружённых в густую сеть широких капилляров синусоидоподобного типа. Каждый клубочек каротидного тельца (гломус) содержит 2– 3 гломусных клетки, или клетки типа I, а на периферии клубочка расположены 1–3 клетки типа II. Афферентные волокна для каротидного тельца содержат вещество Р и относящиеся к кальцитониновому гену пептиды.

Клетки типа I

Клетки типа I образуют синаптические контакты с терминалями афферентных волокон. Для клеток типа I характерно обилие митохондрий, светлых и электроноплотных синаптических пузырьков. Клетки типа I синтезируют ацетилхолин, содержат фермент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физиологическая роль ацетилхолина остаётся неясной. Клетки типа I имеют н- и м-холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из клеток типа I другого нейромедиатора – дофамина. При снижении рО2 секреция дофамина из клеток типа I возрастает. Клетки типа I могут формировать между собой контакты, похожие на синапсы.

Эфферентная иннервация

На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Херинга), и постганглионарные волокна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.

Рис. 10-5. Клубочек каротидного тельца состоит из 2-3 клеток типа I (гломусные клетки), окружённых клетками типа II. Клетки типа I образуют синапсы (нейромедиатор – дофамин) с терминалями афферентных нервных волокон. Рис. 10-5. Клубочек каротидного тельца состоит из 2-3 клеток типа I (гломусные клетки), окружённых клетками типа II. Клетки типа I образуют синапсы (нейромедиатор – дофамин) с терминалями афферентных нервных волокон.

297

Функция

Каротидное тельце регистрирует изменения рСО2 и рО2, а также сдвиги рН крови. Возбуждение передаётся через синапсы на афферентные нервные волокна, по которым импульсы поступают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Херинга).

ГЛАВНЫЕ КЛЕТОЧНЫЕ ТИПЫ СОСУДИСТОЙ СТЕНКИ

Гладкомышечная клетка

Просвет кровеносных сосудов уменьшается при сокращении ГМК средней оболочки или увеличивается при их расслаблении, что изменяет кровоснабжение органов и величину АД.

ГМК сосудов имеют отростки, образующие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через щелевые контакты возбуждение (ионный ток) передаётся от клетки к клетке. Это обстоятельство важно, т.к. в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t. media. ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам.

Вазоконстрикторы и вазодилататоры

Эффект вазоконстрикции реализуется при взаимодействии агонистов с α-адренорецепторами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана. Стимуляция α-адренорецепторов приводит к сокращению ГМК сосудов. Норадреналин – по преимуществу агонист α-адренорецепторов. Адреналин – агонист α- и β-адренорецепторов. Если сосуд имеет ГМК с преобладанием α-адренорецепторов, то адреналин вызывает сужение просвета таких сосудов.

Вазодилататоры. Если в ГМК преобладают β-адренорецепторы, то адреналин вызывает расширение просвета сосуда. Агонисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин, брадикинин, VIP, гистамин, относящиеся к кальцитониновому гену пептиды, простагландины, оксид азота NO.

Двигательная вегетативная иннервация

Вегетативная нервная система регулирует величину просвета сосудов (см. рис. 37 на вклейке).

Адренергическая иннервация расценивается как преимущественно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноимённых вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина – агониста α-адренорецепторов.

Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации

298

происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.

Пролиферация

Численность популяции ГМК сосудистой стенки контролируют факторы роста и цитокины. Так, цитокины макрофагов и В-лимфоцитов (трансформирующий фактор роста β, ИЛ1, γ-ИФН) сдерживают пролиферацию ГМК. Эта проблема имеет важное значение при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарный фактор роста [PDGF], щелочной фактор роста фибробластов [bFGF], инсулиноподобный фактор роста 1 [IGF-1] и фактор некроза опухоли α [TNFα]).

Фенотипы ГМК

Различают два варианта ГМК сосудистой стенки: сократительный и синтетический.

Сократительный фенотип. ГМК имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции и не вступают в митозы, т.к. нечувствительны к эффектам факторов роста.

Синтетический фенотип. ГМК имеют хорошо развитые гранулярную эндоплазматическую сеть и комплекс Гольджи; клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы роста. ГМК в области атеросклеретического поражения сосудистой стенки перепрограммируются с сократительного на синтетический фенотип. При атеросклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор роста [PDGF], щелочной фактор роста фибробластов [bFGF]), усиливающие пролиферацию соседних ГМК.

Регуляция фенотипа ГМК. Эндотелий вырабатывает и секретирует гепариноподобные вещества, поддерживающие сократительный фенотип ГМК. Факторы паракринной регуляции, продуцируемые эндотелиальными клетками, контролируют тонус сосудов. Среди них – производные арахидоновой кислоты (простагландины, лейкотриены и тромбоксаны), эндотелии-1, оксид азота NO и др. Одни из них вызывают вазодилатацию (например, простациклин, оксид азота NO), а другие – вазоконстрикцию (например, эндотелии-1, ангиотензин II). Недостаточность NO вызывает повышение АД, образование атеросклеротических бляшек; избыток NO может привести к коллапсу.

Эндотелиальная клетка

Стенка кровеносного сосуда очень тонко реагирует на изменения гемодинамики и химического состава крови. Своеобразным чувствительным элементом, улавливающим эти изменения, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.

Восстановление кровотока при тромбозе. Воздействие лигандов (АДФ и серотонин, тромбин) на эндотелиальную клетку стимулирует секрецию NO. Его

299

мишени – расположенные поблизости ГМК. В результате расслабления ГМК просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К аналогичному эффекту приводит активация других рецепторов эндотелиальной клетки: гистамина, м-холинорецепторов, α2-адренорецепторов.

Свёртывание крови. Эндотелиальная клетка – важный компонент процесса гемокоагуляции. На поверхности эндотелиальных клеток может происходить активация протромбина факторами свёртывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства. Прямое участие эндотелия в свёртывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свёртывания (например, фактора фон Виллебранда). В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свёртывания крови. Эндотелиальная клетка вырабатывает простациклин PGI2, тормозящий адгезию тромбоцитов.

Факторы роста и цитокины. Эндотелиальные клетки синтезируют и секретируют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тромбоцитарный фактор роста (PDGF), щелочной фактор роста фибробластов (bFGF), инсулиноподобный фактор роста 1 (IGF-1), ИЛ1, трансформирующий фактор роста β (TGFβ). С другой стороны, эндотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток индуцируются щелочным фактором роста фибробластов (bFGF), а пролиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами. Цитокины из макрофагов и В-лимфоцитов – трансформирующий фактор роста β (TGFβ), ИЛ1 и γ-ИФН – угнетают пролиферацию эндотелиальных клеток.

Процессинг гормонов. Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически активных веществ. Так, в эндотелии сосудов лёгких происходит конверсия ангиотензина I в ангиотензин II.

Инактивация биологически активных веществ. Эндотелиальные клетки метаболизируют норадреналин, серотонин, брадикинин, простагландины.

Расщепление липопротеинов. В эндотелиальных клетках происходит расщепление липопротеинов с образованием триглицеридов и холестерина.

Хоминг лимфоцитов. Венулы в паракортикальной зоне лимфатических узлов, миндалин, пейеровой бляшки подвздошной кишки, содержащих скопления лимфоцитов, имеют высокий эндотелий, экспрессирующий на своей поверхности т.н. сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В этих областях лимфоциты прикрепляются к эндотелию и выходят из кровотока (хоминг).

Барьерная функция. Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом и гематотимическом барьерах.

300

АНГИОГЕНЕЗ

Ангиогенез – процесс образования и роста кровеносных сосудов. Он происходит как в нормальных условиях (например, в области фолликула яичника после овуляции), так и в патологических (при заживлении ран, росте опухоли, в ходе иммунных реакций; наблюдается при неоваскулярной глаукоме, ревматоидном артрите и т.д.). Для выживания клеток необходимы кислород и питательные вещества. Минимальное расстояние для эффективной диффузии газа от кровеносного сосуда (источник кислорода) до клетки составляет 100–200 мкм. В случае превышения этой величины образуются новые кровеносные сосуды. Ангиогенез вызывают низкое рО2, снижение рН или гипогликемия, механическое напряжение в ткани вследствие пролиферации клеток, инфильтрация ткани иммунокомпетентными или поддерживающими воспаление клетками, мутации (например, активация онкогенов или делеция генов супрессоров опухоли, контролирующих образование ангиогенных факторов).

Ангиогенные факторы стимулируют образование кровеносных сосудов. Это факторы роста, продуцируемые опухолями, компоненты внеклеточного матрикса, ангиогенные факторы, вырабатываемые самими эндотелиальными клетками. Ангиогенез стимулируют сосудистый эндотелиальный фактор роста (VEGF), ангиогенин, факторы роста фибробластов (aFGF – кислый и bFGF – щелочной), трансформирующий фактор роста α (TGFα). Все ангиогенные факторы можно подразделить на две группы: первая – прямо действующие на эндотелиальные клетки и стимулирующие их митозы и подвижность, и вторая – факторы непрямого влияния, воздействующие на макрофаги, которые, в свою очередь, выделяют факторы роста и цитокины. К факторам второй группы относят, в частности, ангиогенин. В ответ на действие ангиогенного фактора эндотелиальные клетки начинают размножаться и менять свой фенотип. Пролиферативная активность клеток может увеличиваться в 100 раз. Эндотелиальные клетки через собственную базальную мембрану проникают в прилежащую соединительную ткань, участвуя в формировании почки капилляра. По окончании действия ангиогенного фактора фенотип эндотелиальных клеток возвращается в исходное "спокойное" состояние. На более поздних стадиях ангиогенеза в ремоделировании сосуда участвует ангиопоэтин-1, с действием которого также связывают стабилизирующее влияние на сосуд.

Торможение ангиогенеза имеет важное значение, его можно рассматривать как потенциально эффективный метод борьбы с развитием опухолей на ранних стадиях, а также других заболеваний, связанных с ростом кровеносных сосудов (например, неоваскулярная глаукома, ревматоидный артрит). Ингибиторы ангиогенеза – факторы, тормозящие пролиферацию главных клеточных типов сосудистой стенки: ангиостатин, эндостатин, ингибиторы матриксной металлопротеиназы, α-ИФН, β-ИФН, γ-ИФН, ИЛ4, ИЛ12, ИЛ18, пролактин, плазменный фактор свёртывания крови IV. Естественный источник факторов, тормозящих ангиогенез, – ткани, не содержащие кровеносных сосудов (эпителий, хрящ).

Опухоли. Злокачественные опухоли требуют для роста интенсивного кровоснабжения и достигают заметных размеров после развития в них системы кровоснабжения. В опухолях происходит активный ангиогенез, связанный с синтезом и секрецией опухолевыми клетками ангиогенных факторов.

301

СЕРДЦЕ

РАЗВИТИЕ

Сердце закладывается на 3-й неделе внутриутробного развития (рис. 10-6, 10-7). В мезенхиме между энтодермой и висцеральным листком спланхнотома образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки – зачаток эндокарда. Трубки растут и окружаются висцеральным листком спланхнотома. Эти участки спланхнотома утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сердца сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной её части развивается эндокард, а из миоэпикардиальной пластинки – миокард и эпикард. Мигрирующие из нервного гребня клетки участвуют в формировании выносящих сосудов и клапанов сердца (дефекты нервного гребня – причина 10% врождённых пороков сердца, например, транспозиции аорты и лёгочного ствола).

S-образная сердечная трубка

В течение 24-26-х суток первичная сердечная трубка быстро удлиняется и приобретает S-образную форму. Это оказывается возможным благодаря локальным изменениям формы клеток сердечной трубки. На этом этапе отчётливо выделяются следующие отделы сердца: венозный синус – камера на каудальном конце сердца, в неё впадают крупные вены. Краниальнее венозного синуса располагается расширенная часть сердечной трубки, образующая область предсердия. Из средней изогнутой части сердечной трубки развивается желудочек сердца. Желудочковая петля изгибается в каудальном направлении, что перемещает будущий желудочек, находившийся краниальнее предсердия, в дефинитивное положение. Область сужения желудочка и его перехода в артериальный ствол – конус. Между предсердием и желудочком просматривается отверстие – атриовентрикулярный (АВ) канал.

Разделение на правое и левое сердце

Сразу же после образования предсердия и желудочка появляются признаки разделения сердца на правую и левую половины, которое протекает в течение 5-й и 6-й недель. На этом этапе формируются межжелудочковая перегородка, межпредсердная перегородка и эндокардиальные подушки. Межжелудочковая перегородка растёт из стенки первичного желудочка в направлении от верхушки к предсердию. Одновременно с формированием межжелудочковой перегородки в суженной части сердечной трубки между предсердием и желудочком образуются две большие массы рыхло организованной ткани – эндокардиальные подушки. Эндокардиальные подушки, состоящие из плотной соединительной ткани, участвуют в образовании правого и левого АВ-каналов. В конце 4-й недели на краниальной стенке предсердия появляется срединная перегородка в форме полукруглой складки – первичная межпредсердная перегородка (septum primum). Одна дуга складки проходит по вентральной стенке предсердия, а другая – по

302

Рис. 10-6. Закладка сердца. А – 17-суточный эмбрион; Б – 18-суточный эмбрион; В – эмбрион на стадии 4 сомитов (21-е сутки).

дорсальной. Дуги сливаются вблизи АВ-канала, но между ними остаётся первичное межпредсердное отверстие (ostium primum). Одновременно с этими изменениями венозный синус перемещается вправо и открывается в предсердие справа от межпредсердной перегородки. В этом месте формируются венозные клапаны.

Полное разделение сердца

Полное разделение сердца происходит после развития лёгких и их сосудистой сети. Когда первичная перегородка сливается с эндокардиальными подушками АВ-клапана, первичное межпредсердное отверстие закрывается. Массовая гибель клеток в краниальной части первичной перегородки приводит к образованию множества мелких отверстий, образующих вторичное межпредсердное отверстие (ostium secundum); оно контролирует равномерное поступление крови в обе половины сердца. Вскоре в правом предсердии между венозными клапанами и первичной межпредсердной перегородкой формируется вторичная межпредсердная перегородка (septum secundum). Вогнутый её край направлен вверх к месту впадения синуса, а в дальнейшем – нижней полой вены. Формируется вторичное отверстие (овальное окно, foramen ovale). Остатки первичной межпредсердной перегородки, закрывающие овальное отверстие во вторичной межпредсердной перегородке, формируют клапан, распределяющий кровь между предсердиями.

Направление потока крови

Поскольку выходное отверстие нижней полой вены лежит вблизи овального отверстия, то кровь из нижней полой вены попадает через него в левое

Рис. 10-6. Закладка сердца. А – 17-суточный эмбрион; Б – 18-суточный эмбрион; В – эмбрион на стадии 4 сомитов (21-е сутки).









303

Рис. 10-7. Развитие сердца. 1 – первичная межпредсердная перегородка; 2 – атриовентиркулярный (АВ) канал; 3 – межжелудочковая перегородка; 4 – septum spurium; 5 – первичное отверстие; 6 – вторичное отверстие; 7 – правое предсердие; 8 – левый желудочек; 9 – вторичная перегородка; 10– подушка АВ-канала; 11 – межжелудочковое отверстие; 12 – вторичная перегородка; 13 – вторичное отверстие в первичной перегородке; 14 – овальное отверстие; 15 – АВ-клапаны; 16 – предсердно-желудочковый пучок; 17– сосочковая мышца; 18– пограничный гребень; 19 – функциональное овальное отверстие; 20 – первичная перегородка, превратившаяся в клапан овального отверстия [21].
Рис. 10-7. Развитие сердца. 1 – первичная межпредсердная перегородка; 2 – атриовентиркулярный (АВ) канал; 3 – межжелудочковая перегородка; 4 – septum spurium; 5 – первичное отверстие; 6 – вторичное отверстие; 7 – правое предсердие; 8 – левый желудочек; 9 – вторичная перегородка; 10– подушка АВ-канала; 11 – межжелудочковое отверстие; 12 – вторичная перегородка; 13 – вторичное отверстие в первичной перегородке; 14 – овальное отверстие; 15 – АВ-клапаны; 16 – предсердно-желудочковый пучок; 17– сосочковая мышца; 18– пограничный гребень; 19 – функциональное овальное отверстие; 20 – первичная перегородка, превратившаяся в клапан овального отверстия [21].

предсердие. При сокращении левого предсердия кровь прижимает створку первичной перегородки к овальному отверстию. В результате кровь не поступает из правого предсердия в левое, а перемещается из левого предсердия в левый желудочек. Первичная перегородкафункционирует как односторонний клапан в овальном отверстии вторичной перегородки. Кровь поступает из нижней полой вены через овальное отверстие в левое предсердие. Кровь из нижней полой вены смешивается с кровью, поступающей в правое предсердие из верхней полой вены.

Кровоснабжение плода

Обогащённая кислородом кровь из плаценты с относительно низкой концентрацией СО2 по пупочной вене поступает в печень, а из печени – в нижнюю полую вену (рис. 10-8). Часть крови из пупочной вены через венозный проток, минуя печень, сразу попадает в систему нижней полой вены. В нижней полой вене кровь перемешивается. Кровь с высоким содержанием СО2 поступает в правое предсердие из верхней полой вены, которая собирает кровь из верхней части тела. Через овальное отверстие часть крови поступает из правого предсердия в левое. При сокращении предсердий клапан закрывает овальное отверстие, и кровь из левого предсердия поступает в левый желудочек и далее в аорту, т.е. в большой круг кровообращения. Из правого желудочка кровь направляется в лёгочный ствол, который артериальным (боталловым) протоком связан с аортой. Следовательно, через артериальный проток сообщаются малый и большой круги кровообращения. На ранних этапах внутриутробной жизни потребность в крови в несформированных лёгких ещё не велика, кровь из правого желудочка поступает в бассейн лёгочной артерии. Поэтому уровень развития правого желудочка будет определяться уровнем развития лёгкого. По мере развития

304

Рис. 10-8. Схема кровоснабжения плода при рождении. Большая стрелка в сердце указывает ток крови из правого предсердия в левое во время диастолы. При сокращении предсердия овальное отверстие закрывается, и кровь из левого предсердия поступает в левый желудочек. 1 – бронх; 2 – лёгочные капилляры (пока не функционируют); 3 – артерии, приносящие кровь к верхней части тела; 4 – легочная вена; 5 – левое предсердие (смешанная кровь); 6 – дорсальная аорта; 7 – левый желудочек, откуда кровь поступает в большой круг; 8– ЖКТ; 9– надпочечник; 10– почка; 11 – прямая кишка; 12– мочеточник; 13– артерии, приносящие кровь к нижним конечностям; 14– плацента; 15– пуповина; 16– пупочное кольцо; 17– пупочные артерии; 18– пупочная вена; 19– нижняя полая вена; 20 – печень; 21 – правый желудочек, из которого кровь поступает в малый и большой круги кровообращения; 22 – правое предсердие (смешанная кровь); 23 – верхняя полая вена; 24– артериальный (боталлов) проток; 25– легочная артерия; 26– легкое [21].
Рис. 10-8. Схема кровоснабжения плода при рождении. Большая стрелка в сердце указывает ток крови из правого предсердия в левое во время диастолы. При сокращении предсердия овальное отверстие закрывается, и кровь из левого предсердия поступает в левый желудочек. 1 – бронх; 2 – лёгочные капилляры (пока не функционируют); 3 – артерии, приносящие кровь к верхней части тела; 4 – легочная вена; 5 – левое предсердие (смешанная кровь); 6 – дорсальная аорта; 7 – левый желудочек, откуда кровь поступает в большой круг; 8– ЖКТ; 9– надпочечник; 10– почка; 11 – прямая кишка; 12– мочеточник; 13– артерии, приносящие кровь к нижним конечностям; 14– плацента; 15– пуповина; 16– пупочное кольцо; 17– пупочные артерии; 18– пупочная вена; 19– нижняя полая вена; 20 – печень; 21 – правый желудочек, из которого кровь поступает в малый и большой круги кровообращения; 22 – правое предсердие (смешанная кровь); 23 – верхняя полая вена; 24– артериальный (боталлов) проток; 25– легочная артерия; 26– легкое [21].

305

лёгких и увеличения их объёма всё больше крови направляется к ним и всё меньше проходит через артериальный проток. Артериальный проток закрывается вскоре после рождения, когда лёгкие забирают всю кровь из правого сердца. После рождения перестают функционировать и редуцируются, превращаясь в соединительнотканные тяжи, и другие сосуды (пуповины и венозный проток). Овальное отверстие закрывается также после рождения.

СТРОЕНИЕ

Стенка сердца состоит из трёх оболочек: эндокард, миокард и эпикард.

Эндокард

Эндокард – аналог t. intima сосудов – выстилает полости сердца. В желудочках он тоньше, чем в предсердиях.

Эндотелий

Внутренняя часть эндокарда представлена плоскими полигональными эндотелиальными клетками, расположенными на базальной мембране. Клетки содержат небольшое количество митохондрий, умеренно выраженный комплекс Гольджи, пиноцитозные пузырьки, многочисленные филаменты диаметром 10 нм. Эндотелиальные клетки эндокарда имеют рецепторы атриопептина и α1 -адренорецепторы.

Подэндотелиальный слой

Подэндотелиальный (внутренний соединительнотканный) слой представлен рыхлой соединительной тканью.

Мышечно-эластический слой

Мышечно-эластический слой, расположенный кнаружи от эндотелия, содержит ГМК, коллагеновые и эластические волокна.

Наружный соединительнотканный слой

Наружная часть эндокарда состоит из волокнистой соединительной ткани. Здесь можно встретить островки жировой ткани, мелкие кровеносные сосуды, нервные волокна.

Миокард

В состав мышечной оболочки сердца входят рабочие кардиомиоциты, миоциты проводящей системы, поддерживающая рыхлая волокнистая соединительная ткань, коронарные сосуды. Эндокринная функция кардиомиоцитов – синтез и секреция натрийуретических факторов, включая атриопептин.

Проводящая система

Атипичные кардиомиоциты (рис. 10-9) образуют синусно-предсердный узел, предсердно-желудочковый узел (АВ-узел), предсердие-желудочковый ствол (АВ-ствол).

306

Рис 10-9 Проводящая система сердца. Импульсы генерируются в синусно-предсердном узле и передаются по стенке предсердия в АВ-узел, а затем по пучку Гиса, его правой и левой ножкам до волокон Пуркинье в стенке желудочков [39].
Рис 10-9 Проводящая система сердца. Импульсы генерируются в синусно-предсердном узле и передаются по стенке предсердия в АВ-узел, а затем по пучку Гиса, его правой и левой ножкам до волокон Пуркинье в стенке желудочков [39].

Клетки АВ-ствола (пучок Гиса) и ножек пучка Гиса переходят в волокна Пуркинье. Существуют и дополнительные пути. Клетки проводящей системы при помощи десмосом и щелевых контактов формируют волокна. Назначение атипичных кардиомиоцитов – автоматическая генерация импульсов и их проведение к рабочим кардиомиоцитам. Аритмии – нарушения формирования импульса возбуждения или его проведения, проявляются нарушением ритма сердечных сокращений.

Синусно-предсердный узел – номотопный водитель ритма, определяет автоматию сердца (главный водитель ритма), генерирует 60–90 импульсов в минуту.

Предсердие-желудочковый узел. При патологии синусно-предсердного узла его функция переходит к АВ-узлу (частота генерации импульсов – 40–50 в минуту).

Предсердие-желудочковый пучок Гиса состоит из ствола, правой и левой ножек. Левая ножка распадается на переднюю и заднюю ветви. Скорость проведения по пучку Гиса – 1–1,5 м/с (в рабочих кардиомиоцитах возбуждение распространяется со скоростью 0,5–1 м/с), частота генерации импульсов – 30-40 в минуту.

Волокна Пуркинье. Скорость проведения импульса по волокнам Пуркинье – 2–4 м/с, частота генерации импульсов – 20-30 в минуту.

307

Натрийуретические пептиды

Натрийуретические пептиды – мощные гипотензивные факторы. Атриопептин и натрийуретический фактор мозга синтезируют кардиомиоциты правого предсердия, кардиомиоциты желудочков сердца у плода и в послеродовом периоде, кардиомиоциты желудочков сердца при его гипертрофии, а также некоторые нейроны ЦНС.

Коронарные сосуды

Обе коронарные артерии отходят от основания аорты. Задняя стенка левого желудочка, некоторые отделы перегородки и значительная часть правого желудочка кровоснабжаются правой коронарной артерией. Остальные отделы сердца получают кровь из левой коронарной артерии. Ишемическая болезнь сердца развивается в результате локального сужения просвета крупной или среднего калибра коронарной артерии вследствие пролиферации ГМК внутренней оболочки (интима) и отложения в ней липидов. В зоне первичного повреждения эндотелия развивается атеросклеротическая бляшка. ГМК интимы пролиферируют вследствие повреждения эндотелия. В центре бляшки скапливаются окружённые ГМК клеточный детрит, кристаллы и эфиры холестерина, кальций.

Эпикард

Висцеральный листок перикарда образован тонким слоем соединительной ткани, срастающейся с миокардом. Свободная поверхность покрыта мезотелием.

Перикард

Основу перикарда составляет соединительная ткань с многочисленными эластическими волокнами. Поверхность перикарда выстлана мезотелием.

РЕГУЛЯЦИЯ ФУНКЦИЙ

Регуляция функций сердца осуществляется вегетативной двигательной иннервацией, гуморальными факторами и автоматией сердца.

Иннервация

Работу сердца контролируют сердечные центры продолговатого мозга и моста через парасимпатические и симпатические волокна, которые влияют на частоту сокращений (хронотропное действие), силу сокращений (инотропное действие) и скорость предсердно-желудочкового проведения (дромотропное действие). Холинергические и адренергические (преимущественно безмиелиновые) волокна образуют в стенке сердца несколько нервных сплетений, содержащих внутрисердечные ганглии. Скопления ганглиев в основном сосредоточены в стенке правого предсердия и в области устьев полых вен. В целом стимуляция симпатических нервов увеличивает частоту спонтанной деполяризации мембран водителей

308

ритма, облегчает проведение импульса в волокнах Пуркинье и увеличивает частоту и силу сокращения рабочих кардиомиоцитов. Стимуляция парасимпатических нервов, наоборот, уменьшает частоту генерации импульсов пейсмейкерами, снижает скорость проведения импульса в волокнах Пуркинье и уменьшает силу и частоту сокращения миокарда.

Парасимпатическая иннервация

Преганглионарные парасимпатические волокна для сердца проходят в составе блуждающего нерва с обеих сторон. Волокна правого блуждающего нерва иннервируют правое предсердие и образуют густое сплетение в области синусно-предсердного узла. Волокна левого блуждающего нерва подходят преимущественно к предсердно-желудочковому узлу. Поэтому правый блуждающий нерв влияет главным образом на частоту сокращений, а левый – на предсердно-желудочковое проведение. Желудочки имеют менее выраженную парасимпатическую иннервацию. Внутрисердечные нейроны почти все холинергические (парасимпатические). На них, а также на МИФ-клетках заканчиваются терминали холинергических аксонов блуждающего нерва. Отростки нейронов внутрисердечных ганглиев также вступают в контакт с МИФ-клетками. Под действием парасимпатических волокон сила сокращений предсердий уменьшается (отрицательный инотропный эффект), снижается частота сокращений сердца (отрицательный хронотропный эффект) и увеличивается предсердно-желудочковая задержка проведения – отрицательный дромотропный эффект (вплоть до полной преходящей предсердно-желудочковой блокады).

Симпатическая иннервация

Преганглионарные симпатические волокна для сердца идут от боковых рогов верхних грудных сегментов спинного мозга. Постганглионарные адренергические волокна образованы аксонами нейронов ганглиев симпатической нервной цепочки (звёздчатый и отчасти верхний шейный симпатические узлы). Они подходят к органу в составе нескольких сердечных нервов и равномерно распределяются по всем отделам сердца. Терминальные ветви пронизывают миокард, сопровождают коронарные сосуды и подходят к элементам проводящей системы. Миокард предсердий имеет более высокую плотность адренергических волокон. Каждый пятый кардиомиоцит желудочков снабжается адренергической терминалью, заканчивающейся на расстоянии 50 мкм от плазмолеммы кардиомиоцита. Под действием симпатических волокон сила сокращений предсердий и желудочков увеличивается (положительный инотропный эффект), возрастает частота сокращений сердца (положительный хронотропный эффект), укорачивается интервал между сокращениями предсердий и желудочков (положительный дромотропный эффект).

Афферентная иннервация

Чувствительные нейроны ганглиев блуждающих нервов и спинномозговых узлов (С8–Th6) образуют свободные и инкапсулированные нервные окончания в стенке сердца. Афферентные волокна проходят в составе блуждающих и симпатических нервов.

309

Гуморальная регуляция

Кардиомиоциты имеют α1-адренорецепторы, β-адренорецепторы, м-холинорецепторы. Активация α1-адренорецепторов способствует поддержанию силы сокращения. Агонисты β-адренорецепторов вызывают увеличение частоты и силы сокращения, м-холинорецепторов – уменьшение частоты и силы сокращения.

Коронарные сосуды. Симпатические влияния почти всегда приводят к увеличению коронарного кровотока. α1-Адренорецепторы и β-адренорецепторы неравномерно распределены по коронарному руслу. α1-Адренорецепторы присутствуют в ГМК сосудов крупного калибра, их стимуляция вызывает сужение артериол и вен сердца. β-Адренорецепторы чаще встречаются в мелких коронарных артериях. Стимуляция β-адренорецепторов расширяет артериолы.

310


На главную
Комментарии
Войти
Регистрация
Status: 408 Request Timeout